

 $\begin{array}{c} \text{Application Specific Discretes} \\ \text{A.S.D.}^{\text{\tiny TM}} \end{array}$

TRIPOLAR PROTECTION FOR NETWORK INTERFACES

FEATURES

- PROTECTS HIGH-SPEED LINE DRIVERS / RECEIVERS
- CROWBAR PROTECTION MODE
- VERY LOW CAPACITANCE : C = 30 pF MAXIMUM
- HIGH SURGE CURRENT CAPABILITY : Ipp = 150A FOR 8/20 μs SURGE

Compatible with all protection standards, the TPN3021 is designed for protecting dataline drivers and receivers against high surges.

With a stand-off voltage of 28V and a very low capacitance, this device is able to protect high-speed interfaces such as T1/E1 interface, as well as the traditional types such as RS232 and RS485.

COMPLIES WITH THE FOLLOWING STANDARDS :

- IEC801-2	15kV	(air discharge)
------------	------	-----------------

- IEC801-4 40A (repetitive 2.5kHz)
- IEC801-5 1.2/50μs 4kV 8/20μs 150A

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS $(0^{\circ}C \le T_{amb} \le 70^{\circ}C)$

Symbol	Parameter	Value	Unit	
I _{pp}	Peak pulse current	10/1000 μs 8/20 μs	30 150	A A
T _{stg} Tj	Storage temperature range Maximum junction temperature		- 40 to + 150 150	သူ သူ

THERMAL RESISTANCE

Symbol	Parameter	Value	Unit
R _{th(j-a)}	Junction to ambient	170	°C/W

July 1995 - Ed : 6

ELECTRICAL CHARACTERISTICS

(Tamb=25°C, unless otherwise specified)

Symbol	Parameter
V _{RM}	Stand-off voltage
V _{BO}	Breakover voltage
Ι _Η	Holding current
I _{BO}	Breakover current
I _{RM}	Leakage current at V _{RM}
IPP	Peak pulse current
С	Capacitance
αΤ	Temperature coefficient

Туре	I _{RM} @ V _{RM} max. note 1		V _{BO} @ I _{BO} max.		I _H min. note 2	V⊤ max. note 3	typ. C max. note 4		αT typ. note 5	
	μΑ	v	v	mA	mA	v	pF	рF	10 ⁻⁴ /°C	
TPN3021	4	28	38	100	30	4	25	30	8	

Note 1 : Between any I/O pin and Ground or between I/O1 and I/O2.

Note 2 : See the functional holding current (IH) test circuit.

Note 3 : Square pulse : $t_p = 500 \,\mu s$, $I_T = 5A$.

Note 4 : Between any I/O pin and GND or between I/O1 and I/O2 at 0V bias, VRMS = 30 mV, F = 1 MHz.

Note 5 : $\Delta VBO = \alpha T \times (T_{amb} - 25) \times VBO(25^{\circ}C)$.

2/4

FUNCTIONAL HOLDING CURRENT (IH) TEST CIRCUIT : GO-NO GO TEST

SGS-THOMSON MICROELECTRONICS

Application 2: RS485 Interface Protection

MARKING

Туре	Marking				
TPN3021	TPN302				

Application 3 : RS232 Interface Protection

TPN3021

PACKAGE MECHANICAL DATA

SO8 (Plastic)

RFF	M	llimate	DIMEN	ISIONS	Inchoo			DEE	DIMENSIONS					
	Min.	Typ.	Max.	Min.	Typ.	Max.			Min.	Typ.	Max.	Min.	Typ.	Max.
A			1.75		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.069		D	4.8	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5.0	0.189		0.197
a1	0.1		0.25	0.004		0.010		Е	5.8		6.2	0.228		0.244
a2			1.65			0.065		е		1.27			0.050	
a3	0.65		0.85	0.026		0.033		e3		3.81			0.150	
b	0.35		0.48	0.014		0.019		F	3.8		4.0	0.15		0.157
b1	0.19		0.25	0.007		0.010		L	0.4		1.27	0.016		0.050
С	0.25		0.5	0.010		0.020		М			0.6			0.024
c1 45°(typ)								S			8° (r	max)		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are notauthorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1995 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

